1,014 research outputs found

    Dynamics of trimming the content of face representations for categorization in the brain

    Get PDF
    To understand visual cognition, it is imperative to determine when, how and with what information the human brain categorizes the visual input. Visual categorization consistently involves at least an early and a late stage: the occipito-temporal N170 event related potential related to stimulus encoding and the parietal P300 involved in perceptual decisions. Here we sought to understand how the brain globally transforms its representations of face categories from their early encoding to the later decision stage over the 400 ms time window encompassing the N170 and P300 brain events. We applied classification image techniques to the behavioral and electroencephalographic data of three observers who categorized seven facial expressions of emotion and report two main findings: (1) Over the 400 ms time course, processing of facial features initially spreads bilaterally across the left and right occipito-temporal regions to dynamically converge onto the centro-parietal region; (2) Concurrently, information processing gradually shifts from encoding common face features across all spatial scales (e.g. the eyes) to representing only the finer scales of the diagnostic features that are richer in useful information for behavior (e.g. the wide opened eyes in 'fear'; the detailed mouth in 'happy'). Our findings suggest that the brain refines its diagnostic representations of visual categories over the first 400 ms of processing by trimming a thorough encoding of features over the N170, to leave only the detailed information important for perceptual decisions over the P300

    Cracking the code of oscillatory activity

    Get PDF
    Neural oscillations are ubiquitous measurements of cognitive processes and dynamic routing and gating of information. The fundamental and so far unresolved problem for neuroscience remains to understand how oscillatory activity in the brain codes information for human cognition. In a biologically relevant cognitive task, we instructed six human observers to categorize facial expressions of emotion while we measured the observers' EEG. We combined state-of-the-art stimulus control with statistical information theory analysis to quantify how the three parameters of oscillations (i.e., power, phase, and frequency) code the visual information relevant for behavior in a cognitive task. We make three points: First, we demonstrate that phase codes considerably more information (2.4 times) relating to the cognitive task than power. Second, we show that the conjunction of power and phase coding reflects detailed visual features relevant for behavioral response-that is, features of facial expressions predicted by behavior. Third, we demonstrate, in analogy to communication technology, that oscillatory frequencies in the brain multiplex the coding of visual features, increasing coding capacity. Together, our findings about the fundamental coding properties of neural oscillations will redirect the research agenda in neuroscience by establishing the differential role of frequency, phase, and amplitude in coding behaviorally relevant information in the brai

    Aging of large area CsI photocathodes for the ALICE HMPID prototypes

    Get PDF
    The ALICE HMPID RICH detector is equipped with CsI photocathodes in a MWPC for the detection of Cherenkov photons. The long term operational experience with large area CsI photocathodes will be described. The RICH prototypes have shown a very high stability of operation and performance, at a gain of 10 \5 and with rates up to 2x10 \4 cm-2 s-1. When exposure to air has been avoided, no degradation of the CsI quantum efficiency has been observed on photocathodes periodically exposed to test-beams over 7 years, corresponding to local integrated charge densities of ~ 1 mC cm-2. The results of limited exposures to oxygen and humidity will also be presented

    A cross-cultural study of the representation of shape: Sensitivity to generalized cone dimensions

    Get PDF
    Many of the phenomena underlying shape recognition can be derived from an assumption that the representation of simple parts can be understood in terms of independent dimensions of generalized cones, e.g., whether the axis of a cylinder is straight or curved or whether the sides are parallel or nonparallel. What enables this sensitivity? One explanation is that the representations derive from our immersion in a manufactured world of simple objects, e.g., a cylinder and a funnel, where these dimensions can be readily discerned independent of other stimulus variations. An alternative explanation is that genetic coding and/or early experience with extended contours - a characteristic of all naturally varying visual worlds - would be sufficient to develop the appropriate representations. The Himba, a seminomadic people in a remote region of Northwestern Namibia with little exposure to regular, simple artifacts, were virtually identical to western observers in representing generalized-cone dimensions of simple shapes independently. Thus immersion in a world of simple, manufactured shapes is not required for the development of a representation that specifies these dimensions independently

    The Integrated HV, LV and Liquid Radiator Control System for the HMPID in the ALICE Experiment at LHC

    Get PDF
    The complexity and the underground location of the new generation experiments (ALICE, ATLAS, CMS and LHCb) at the CERN Large Hadron Collider (LHC) requires a reliable and user friendly control system to operate such large detectors remotely. Control system experts at CERN are deeply involved in developing the JCOP (Joint Controls Project) 'Framework', a software running in the PVSSII SCADA1 (Supervisory Control And Data Acquisition) system, that will provide a homogeneous and ready to use tool for the control system developers of the LHC experiments. The High Momentum Particle Identification Detector (HMPID), one of the ALICE2 sub-detectors, is being equipped with a Detector Control System (DCS) developed within the JCOP Framework. In this paper the basic features and the first results of the DCS prototype are presented

    Critique and Review of Leader-Member Exchange Theory: Issues of Agreement, Consensus, and Excellence

    Get PDF
    The relationship quality that develops between leaders and those designated as followers is of longstanding interest to researchers and practitioners. The purpose of the present article is to review the more recent developments in the field of leader-member exchange (LMX) theory to identify specific issues related to leader-member agreement and follower consensus that have potentially important theoretical and practical implications. We introduce the concept of LMX excellence, which involves high-quality LMX, high leader-member agreement as well as high group consensus in LMX quality. We outline how leaders and followers' behaviour as well as context can enhance or hinder the development of LMX excellence and conclude with an overview of the practical and theoretical implications as well as future research needs

    Parametric study of EEG sensitivity to phase noise during face processing

    Get PDF
    <b>Background: </b> The present paper examines the visual processing speed of complex objects, here faces, by mapping the relationship between object physical properties and single-trial brain responses. Measuring visual processing speed is challenging because uncontrolled physical differences that co-vary with object categories might affect brain measurements, thus biasing our speed estimates. Recently, we demonstrated that early event-related potential (ERP) differences between faces and objects are preserved even when images differ only in phase information, and amplitude spectra are equated across image categories. Here, we use a parametric design to study how early ERP to faces are shaped by phase information. Subjects performed a two-alternative force choice discrimination between two faces (Experiment 1) or textures (two control experiments). All stimuli had the same amplitude spectrum and were presented at 11 phase noise levels, varying from 0% to 100% in 10% increments, using a linear phase interpolation technique. Single-trial ERP data from each subject were analysed using a multiple linear regression model. <b>Results: </b> Our results show that sensitivity to phase noise in faces emerges progressively in a short time window between the P1 and the N170 ERP visual components. The sensitivity to phase noise starts at about 120–130 ms after stimulus onset and continues for another 25–40 ms. This result was robust both within and across subjects. A control experiment using pink noise textures, which had the same second-order statistics as the faces used in Experiment 1, demonstrated that the sensitivity to phase noise observed for faces cannot be explained by the presence of global image structure alone. A second control experiment used wavelet textures that were matched to the face stimuli in terms of second- and higher-order image statistics. Results from this experiment suggest that higher-order statistics of faces are necessary but not sufficient to obtain the sensitivity to phase noise function observed in response to faces. <b>Conclusion: </b> Our results constitute the first quantitative assessment of the time course of phase information processing by the human visual brain. We interpret our results in a framework that focuses on image statistics and single-trial analyses

    Teaching Implicit Leadership Theories to develop leaders and leadership – How and why it can make a difference

    Get PDF
    Implicit leadership theories (ILTs) are lay images of leadership, which are individually and socially determined. We discuss how teaching ILTs contributes to developing leaders and leaderships by raising self- and social awareness for the contexts in which leadership takes place. We present and discuss a drawing exercise to illustrate different ILTs and discuss the implications for leaders and leadership, with a particular focus on how leaders claim, and are granted, leader identities in groups

    Face or building superiority in peripheral vision reversed by task requirements

    Get PDF
    Peripheral vision has been the topic of few studies compared with central vision. Nevertheless, given that visual information covers all the visual field and that relevant information can originate from highly eccentric positions, the understanding of peripheral vision abilities for object perception seems essential. The poorer resolution of peripheral vision would first suggest that objects requiring large-scale feature integration such as buildings would be better processed than objects requiring finer analysis such as faces. Nevertheless, task requirements also determine the information (coarse or fine) necessary for a given object to be processed. We therefore investigated how task and eccentricity modulate object processing in peripheral vision. Three experiments were carried out requiring finer or coarser information processing of faces and buildings presented in central and peripheral vision. Our results showed that buildings were better judged as identical or familiar in periphery whilst faces were better categorised. We conclude that this superiority for a given stimulus in peripheral vision results (a) from the available information, which depends on the decrease of resolution with eccentricity, and (b) from the useful information, which depends on both the task and the semantic category
    corecore